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Introduction

I Small differences in information may lead to significant
differences in the behavior (Rubinstein, 1989).

I “Topologies on types” literature (Dekel et al. (2006),
Chen et al. (2016)).

I What about payoffs?
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Introduction

I Goal: Define a payoff-based notion of distance between
information structures.

I Problem A:
I earlier literature focused on rationalizability as solution

concept,
I characterization through Mertens-Zamir hierarchies
I no existence issues,
I but to talk about payoffs we need an “ex ante”,

equilibrium-like solution concept.
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Introduction

I Goal: Define a payoff-based notion of distance between
information structures

d(u, v) = sup
g∈G
|π (u, g)− π(v , g)|.

where
I u and v are information structures (i.e., type spaces) and
I π (g , u) are “equilibrium payoffs” in Bayesian game with

payoffs g on u,
I G are all “bounded” game payoffs.

I A tight bound on the value of information
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Introduction

I Goal: Define a payoff-based notion of distance between
information structures

d(u, v) = sup
g∈G
|π (u, g)− π(v , g)|.

I Problem B: multiplicity
I Gossner (1996) and Kajii and Morris (1998) compute

distance between sets,
I Problem C: because of freedom to choose games, the

notion of payoff-based distance is trivial,
I approximate equilibrium (Kajii and Morris (1998)),

I Problem D: existence issues (Simon (2003)).
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Introduction

I Idea: restrict the games to zero-sum

d(u, v) = sup
g is zero-sum

|val (u, g)− val(v , g)|.

I val(u, g) is the value of zero-sum game (g , u),
I value-based distance
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Introduction

I Idea: restrict the games to zero-sum

d(u, v) = sup
g is zero-sum

|val (u, g)− val(v , g)|.

I no multiplicity, no existence issues, non-trivial,
I a tight bound on the willingness to pay for information.

I Zero-sum games have a natural comparative statics wrt
information (Peski (2008)).

I Re-examine the “topologies on types” literature
I most constructions and counter-examples are about

coordination games.
I Still, an important class of games.
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Introduction
Results:

1. Characterization of the distance
2. Value of (different pieces of) information: substitutes,

complements, joint information
3. Value-based topology on countable types is equal to the

weak (i.e., product) topology.
But ...

4. Value-based distance is not pre-compact.
4.1 last unsolved problem of Mertens (86)

5. Payoff-based distance.
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Value-based distance
I u,v are countable information structures over finite K ,

I common prior, countable types ti ∈ N,
I basic distance (L1-norm):

‖u − v‖ =
∑
k,t,s

|u (k , t, s)− v (k, t, s)| .

I G0 is a class of zero-sum payoff functions
g : A1 × A2 × K → R (payoffs of player 1) st.
I Ai are finite or countable, and
I supa1a2 |g (a1, a2)| ≤ 1,
I player 1 is the maximizer, and

val (u, g) = max
σ1

min
σ2

Eσ1,σ2g (a1, a2, k)

= min
σ2

max
σ1

Eσ1,σ2g (a1, a2, k) .
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Value-based distance
Characterization

Definition
Value-based distance (VBD)

d(u, v) = sup
g∈G0

|val (u, g)− val(v , g)|.

I Tight bound on cost/benefits of moving from one to
another information structures,

I d(u, v) ≤ ‖u − v‖ ≤ 2.
I the first inequality is a property of zero-sum games.
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Value-based distance
Characterization

I A garbling is a mapping q : N→ ∆N.
I q.u and u.q denote garbled information structure

obtained from u.
I q.u means worse information for player 1,
I u.q means worse information for player 2.

I Peski, 08:

∀g∈G0val (u, g) ≥ val (v , g)⇐⇒ ∃q1,q2q1.u = v .q2.
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Value-based distance
Characterization
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Value-based distance
Characterization
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Value-based distance
Characterization

Theorem

sup
g∈G

(val(v , g)− val(u, g)) = min
q1,q2
‖q1.u − v .q2‖.

It follows that

d (u, v) = max

(
min
q1,q2
‖q1.u − v .q2‖,min

q1,q2
‖u.q1 − q2.v‖

)
.
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Value-based distance
Characterization

Theorem

sup
g∈G

(val(v , g)− val(u, g)) = min
q1,q2
‖q1.u − v .q2‖.

I interpretation,
I reduces the complexity of the problem (max-max-mins to

min-min),
I sufficiently easy to use in calculations and applications.
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Value-based distance
Characterization: Proof

I Part 1:
I Value is monotonic wrt. information:

val(v , g)−val(u, g) ≤ val(v .q2, g)−val(q1.u, g) ≤ ‖v .q2−q1.u‖.

I Take inf over garblings.
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Value-based distance
Characterization: Proof

I identify each garbling with a mixed strategy,
I Id is a special case

I the expected payoff: 〈g , q1.u.q2〉, where
〈g , u〉 =

∑
k,c,d g(k , c , d)u(k , c , d),

I Using the Minmax Theorem,

val(v , g)− val(u, g) ≥ inf
q2
〈g , v .q2〉 − sup

q1

〈g , q1.u〉

= sup
g

inf
q1,q2
〈g , v .q2 − q1.u〉

= inf
q1,q2

sup
g
〈g , v .q2 − q1.u〉

= inf
q1,q2
‖q1.u − v .q2‖ .
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Applications

I Impact of marginal over K .
I Single-agent problems
I Value of additional information: Substitutes
I Value of additional information: Complements
I Value of jointly-held information
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Applications
Impact of marginal over K .

Proposition
∀u, v , if margK u = p,margK v = q, we have

∑
k

|pk − qk | ≤ d (u, v) ≤ 2

(
1− max

p′,q′∈∆K

∑
k

min (pkq
′
k , p

′
kqk)

)
.

(1)

I If p = q, the upper bound is equal to 2 (1−maxk pk),
I a bound on the strategic value of information.
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Applications
Single-agent problems

I Single-agent problems g ∈ G0 (minimizer’s action is
irrelevant):

d1(u, v) = sup
g∈G1

|val (u, g)− val(v , g)| ≤ d (u, v) .

I d1 is (relatively) easy to characterize (especially when
K = {0, 1}).
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Applications
Single-agent problems

Proposition
If

µ ∈ ∆ (K × T × T ′ × S) ,

u = margK×T×Sµ,
v = margK×T ′×Sµ,

and (T and S) and (T ′ and S) are conditionally independent
given K , then

d (u, v) = d1 (u, v) .

I We say that information under µ is conditionally
independent (ICI).

I ICI is needed because otherwise T → T ′ may not change
information about K , but improve about S .
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Applications
Single-agent problems

Proposition
If

u ∼ ∆
(
K × T ×��T ′ × S

)
,

v ∼ ∆
(
K ×��T × T ′ × S

)
,

and T ×T ′ and S are conditionally independent given K , then

d (u, v) = d1 (u, v) .

I We say that information under µ is conditionally
independent (µ has ICI).

I ICI is needed because otherwise T → T ′ may reduce
information about K , but improve about S .
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Applications
Value of additional information

I Special case:

u ∼ ∆ (K × T × T ′ × S) ,

v ∼ ∆
(
K × T ×��T ′ × S

)
If u has ICI,

d (u, v) = d1 (u, v) .

I Value of additional (conditionally independent)
information can be bounded by its value in single-agent
problems.
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Applications
Value of additional information: Substitutes

Proposition
Suppose that

u ∼ ∆ (K × (T × T1 × T2)× S) and v ∼ ∆ (K × (T × T1 ×��T2)× S) ,

u′ ∼ ∆ (K × (T ×��T1 × T2)× S) and v ′ ∼ ∆ (K × (T ×��T1 ×��T2)× S)

and that, under u, T1 is conditionally independent from
T × T2 × S given K . Then,

d (u, v) ≤ d (u′, v ′) .

I d (u, v) is the value of T2 in the presence of T1,
I d (u, v) is the value of T2 in the absence of T1,
I Two additional pieces of player’s information are

substitutes.
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Applications
Value of additional information: Complements

Proposition
Suppose that

u ∼ ∆ (K × (T × T1)× (S × S1)) and v ∼ ∆ (K × (T ×��T1)× (S × S1)) ,

u′ ∼ ∆
(
K × (T × T1)×

(
S ×��S1

))
and v ′ ∼ ∆

(
K × (T ×��T1)×

(
S ×��S1

))
and that, under u, T × T1 is conditionally independent from S
given K . Then,

d (u, v) ≥ d (u′, v ′) .

I d (u, v) is the value of T1 in the presence of S1,
I d (u, v) is the value of T1 in the absence of S1,
I Two additional pieces of opposing players’ information are

complements.
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Applications
Value of jointly-held Information

I Example: states and types are equally likely

t\s *
* k = 01/211/2

t\s + -
+ k = 1 k = 0
- k = 0 k = 1

I On the right, information about the state k is held jointly.
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Applications
Value of jointly-held Information

I Example: states and types are equally likely

v : t\s *
* k = 01/211/2

u : t\s + -
+ k = 1 k = 0
- k = 0 k = 1

I On the right, information about the state k is held
jointly:
I t is independent from k ,
I s is independent from k ,
I (t, s) is NOT independent from k .

I We show that d (u, v) = 0.
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Applications
Value of jointly-held Information

I Consider a distribution µ ∈ ∆ (X × Y × Z )

I Random variables x and y are ε-conditionally independent
given z if∑

z

µ (z)
∑
x ,y

|µ (x , y |z)− µ (x |z)µ (y |z)| ≤ ε.

I “ex ante” notion
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Applications
Value of jointly-held Information

Proposition
Suppose that

u ∼ ∆ (K × (T × T1)× (S × S1))

v ∼ ∆
(
K × (T ×��T1)×

(
S ×��S1

))
,

and
I T1 is ε-conditionally independent from (K , S) given T ,

and
I S1 is ε-conditionally independent from (K ,T ) given S .

Then,
d (u, v) ≤ ε.

36 / 58



Applications
Value of jointly-held Information

I Example: State k = 0, 1 equally likely
I u= common knowledge of the state
I v=Rubinstein’s email game

I pl. 1 observes the state,
I If state 1, pl. 1 sends an email that goes back and forth,

with probability of being lost α > 0,
I starting from v , learning the true state for pl. 2 is

Cα-conditionally independent from the state and pl. 1’s
info for some constant C .

I d (u, v) ≤ Cα.
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Value-based topology

I Mertens-Zamir constructed the universal type space U
I distributions over consistent common prior hirerachies,
I value of the zero-sum game depends only on the

representation of an information structure in U,
I natural plays to study the distance,

I U is compact under the weak (i.e. the product) topology
of the convergence of belief hierarchies,
I countable info structures U0 ⊆ U are dense in U.

I “Topologies on types” literature: the weak topology is too
weak to capture continuous strategic behavior.
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Value-based topology

Theorem
For any (countable) u and any sequence un → u in the weak
topology,

d (un, u)→ 0.

I convergence of higher order belief ensures convergence of
values across all zero-sum games,

I “countable” is important.
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Value-based topology
Proof
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Value-based topology
Proof
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(Non)-compactness of VBD
Last open problem of Mertens (86)

I VBD convergence is equivalent to convergence in product
topology around countable type spaces.

I Countable type spaces are dense in product topology.
I Does it mean that VBD topology is equivalent to product

topology everywhere?
I In particular, product topology is compact.
I Does it mean that VBD topology is also compact?
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(Non)-compactness of VBD
Last open problem of Mertens (86)

I In 1986, Mertens asked whether family of functions
(u → val (u, g))g is uniformly equicontinuous,
I or, equivalently, where U is compact under VBD.

I Existence of finite classifications of type spaces.
I The question is important for zero-sum repeated games:

I convergence of value vδ → v1 proven in some classes of
games (large lit. started from Mertens 71),

I a proof for general stochastic games is still missing,
I uniform equicontinuity of value would deliver it

immediately.
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(Non)-compactness of VBD

Theorem
There exists ε > 0 and a sequence un such that for each k ≤ n
un and uk has the same kth hierarchy of belief and such that
for each k 6= n

d (uk , un) > ε.

I U is not compact under VBD.
I ε > 0 in the proof is v. small, but our proof is not careful.
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(Non)-compactness of VBD

I Answer to Mertens is negative.
I Universe of type spaces is large, even if we restrict

ourselves to zero-sum games only.
I Be wary of (over)interpreting “topological” results.
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(Non)-compactness of VBD
Proof

I Markov chain a1, a2, a3, ... over {1, ...,N},
I a1 depends on k ∈ {0, 1}.

I Pl. 1 observes t(n) = (a1, ..., a2n+1),
Pl. 2 observes s(n) = (a2, ..., a2n+2).

I In game g k , players are asked to report k first signals and
we check whether their reports are consistent.
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Payoff-based distance
I What can we say about non-zero sum games?
I Payoff-based distance

dNZS (u, v) = sup
g∈G

dH
max (Eq (u, g) ,Eq (v , g)) , (2)

where
I G are all non-zero-sum games,
I Eq (u, g) is the set of ex-ante equilibrium payoffs and
I dH is the Hausdorf distance.

I Kajii and Morris (98) define two structures to be
strategically ε-close if for any equilibrium on one
structure, there is ε-interim equilibrium on the other with
ε-close payoffs (roughly).
Our definition is easier to interpret for large ε.
But, there is a cost.
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Payoff-based distance

I Information structures are simple if they have a unique
(up to measure 0) common knowledge event.

I ũ is the representation of u in Mertens-Zamir uts.

Theorem
Suppose that u, v are non-redundant information structures. If
u and v are simple, then

dNZS (u, v) (u, v) =

{
0, if ũ = ṽ ,

2 otherwise.
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Payoff-based distance

I Information structures are simple if they have a unique
(up to measure 0) common knowledge event

Theorem
More generally, suppose that u =

∑
pαuα and v =

∑
qαvα

are the decompositions into simple information structures. We
can always choose the decompositions so that ũα = ṽα for
each α. Then,

dNZS (u, v) =
∑
α

|pα − qα| .
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Conclusions

I Value-based notion on distance on information structures.

I a tight bound on the willingness to pay for information
I tractable -> characterization, applications.

I Some predictions of the literature do not hold when
restricted to zero-sum games,
I no email-game type of examples,

I But, VBD is not compact.
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